41. Mitteilung [1]

Zur bimolekularen Photoreduktion cyclischer Ketone, cyclischer β -Hydroxyketone und cyclischer α, β -Epoxyketone¹)

Vorläufige Mitteilung²)

von P. Keller, Frl. G. Eggart, H. Wehrli, K. Schaffner und O. Jeger

(22. IX. 67)

Im Folgenden berichten wir über photolytische Reduktionsversuche mit diversen Steroidketonen nach dem generellen Schema (1), welche die Möglichkeiten zur Abklärung verschiedener photochemischer Problemstellungen abgrenzen sollten³). Die Resultate sind in der Tabelle 1 zusammengefasst.

$$R_2C=O \xrightarrow{h\nu} R_2\dot{C}-OH \xrightarrow{RH} R_2CH-OH$$
(1)

1. 3-Oxo-17 β -acetoxy-5 β -androstan (1a) und dessen 5 β -Hydroxyderivat 3a (Tab. 1: Versuche Nr. 1-6; Formelschema 1)

Durch die Verwendung von H-Donatoren in hohen Konzentrationen (u.a. des diesbezüglich sehr leistungsfähigen Tri-(n-butyl)-stannans [4]) und von Triplettlöschern (1, 3-Pentadien) sollten optimale Bedingungen geschaffen werden, um eine H-Abstraktion durch die Singlett-Anregungszustände der Ketone zu erzwingen.

Der damit angestrebte Einblick in die H-Abstraktionsfähigkeit des angeregten Singletts ist von erheblichem Interesse. Einerseits erfolgen bimolekulare H-Abstraktionen durch Aceton [5] und konjugierte Arylketone [6] in Lösung ausschliesslich aus dem Triplettzustand, andererseits werden intramolekulare 1,5-H-Verschiebungen unter Typ-II-Cycloelimination in aliphatischen Ketonen gleichzeitig aus dem angeregten Singlett- und dem Triplett-Zustand ausgelöst [7]. Für eine Rationalisierung dieser Dichotomie muss zwischen zwei gleichermassen plausiblen Möglichkeiten experimentell unterschieden werden: a) Der n, π^* -Singlettzustand der untersuchten Ketone ist, im Gegensatz zum entsprechenden Triplett, für eine H-Abstraktion ungeeignet (und Typ-II-Cycloeliminationen aus dem Singlett erfolgen nach einem synchronen cyclischen Zerfallsmechanismus); b) die allfällige Singlettreaktivität ist lediglich infolge zu rascher Singlett-Triplett-Umwandlung für bimolekulare H-Abstraktionen unzureichend (vgl. dazu [7]).

Die Bestrahlung von 1a [8] in Benzol und Stannan oder in Isopropanol führte ausschliesslich zur Reduktion der Ketogruppe (Versuche Nr. 1, 2)⁴). Mit Stannan resul-

- Ein Teil der Resultate der Photoreduktion von Ketonen mit Tri-(n-butyl)-stannan wurde von K.S. in einem Vortrag am Second IUPAC International Symposium on Photochemistry, Enschede/Holland, 16.-22. Juli 1967, bekannt gegeben [2].
- ²) Eine ausführliche Mitteilung soll später in dieser Zeitschrift erscheinen.
- ³) Bimolekulare Photoreduktionen von nicht-konjugierten cyclischen Ketonen sind bisher nur in wenigen Fällen beschrieben worden [3].
- 4) Die in dieser Arbeit untersuchten Ketone werden in Benzollösung im Dunkeln von Tri-(nbutyl)-stannan nicht angegriffen. Erst bei der Chromatographie werden sie bei Zimmertemperatur allmählich reduziert [die Epoxyketone an Kieselgel und Aluminiumoxid (→ Epoxyalkohole), die Ketone 1a und 3a lediglich an Kieselgel]. Diese störenden Dunkelreaktionen konnten bei den chromatographischen Analysen [vgl. Tab. 1: Anmerkungen d) und e)] durch kurze Fliesszeiten weitgehend umgangen werden.

Tabelle 1. UV.-Bestrahlungsversuche mit den Ketonen 1a, 3a, 5, 7, 8 und 13

Versuch Nr.	Keton [0,03м]	e ^{313 nm a})	Lösungsmittel Zusätze ^b)	Bestrahlungs- dauer [Min.]	Produktanalyse	
1	1a	9	Isopropanol	60°)	1a (69%) + 2a + 2b (31%)	d)
2	1a	9	Benzol+ 0,74м (n-Bu) ₈ SnH	60 °)	1a (34%) + 2a (66%)	d)
3	1a	9	1, 3-Pentadien + 5,7 м Isopropanol	30 °)	1a (keine Reakti	on) ^e)
4	1a		1,3-Pentadien+ 0,74м (n-Bu) ₃ SnH	30 °)	1 a (keine Reaktie	on) °)
5	3a	14	Isopropanol	60°)	3a (65%) +4a (13%) +4b (22%)	^d)
6	3a	23	Benzol+ 0,74 m (n-Bu) ₃ SnH	210 °)	3a (52%) + 4a + 4b (48%)	d)
7	5	35	Benzol	30°)	5+ 6 (46%)	e) f)
8	5	34	1,3-Pentadien	30 °)	5 + 6 (18%)	e) f)
9	5	41	Isopropanol	30 °)	5 + 6 (15,5%)	e) f)
10	5		Benzol+ 0,74 м (n-Bu) ₃ SnH	30 °)	1a, b ($< 26\%$) + 3a, b (74%)	d) g)
11	5	34	1,3-Pentadien+ 0,74м (<i>n</i> -Bu) ₃ SnH	30 °)	5 (keine Reaktion)	e) f)
12	7	35	Benzol	30 °)	7 + 9 (30%)	e) f)
13	7		Benzol+ 0,74 m (n-Bu) ₃ SnH	30°)	kein 7 11 (70%)	d) h)
14	8	38	Benzol	40°)	8 + 10 (9%)	e) f)
15	8	14 1	Benzol+ 0, 7 4 m (n-Bu) ₃ SnH	40 °)	kein 8 12 (55%)	d) h)
16 17	13 13	32	Benzol Benzol+ 0,74м (n-Bu) ₃ SnH	75°) 150°)	13 + 14 13 (30%) + 14 (23%) + 15 (27%)	e) d)

^a) Extinktionskoeffizienten der Ketone im jeweiligen Lösungsmittelsystem vermessen. Stannanzusätze verursachten in keinem Fall Verschiebungen oder Intensitätsänderungen der UV.-Absorption.

^b) In den Versuchen Nr. 3, 4, 8, 11, 14 und 17 wurde der gelöste Sauerstoff vor der UV.-Bestrahlung durch Argon verdrängt. Testversuche mit vorher belüfteten und mit sauerstofffreien Lösungen zeigten keine ins Gewicht fallende Sauerstoffempfindlichkeit in den vorliegenden Versuchsanordnungen.

c) > 310 nm: Hg-Hochdruckbrenner Q 81 (70 Watt), QUARZLAMPEN GMBH, Hanau, und 5-proz. K-Hydrogenphtalat-Filterlösung.

^d) Analyse mittels Dünnschichtchromatographie des Rohgemisches (DS., qualitativ) und Säulenchromatographie (quantitativ).

e) Qualitative Dünnschichtanalyse des Rohgemisches.

- ^f) Analyse mittels Spektroskopie des Fe^{III}-Komplexes von **6** [$\varepsilon_{max}^{542} = 1250$, in C₂H₅OH].
- Bie chromatographische Auftrennung der beiden stereoisomeren Paare 1a, b und 3a, b in die Komponenten gelang nicht quantitativ.
 ^h) Restliches Material nicht identifiziert.

tierte dabei praktisch nur das 3α -Hydroxyderivat 2a [9], mit Isopropanol ein Gemisch der beiden Stereoisomeren 2a und 2b [9] im ungefähren Verhältnis 9:1 (NMR.-Analyse). In 1,3-Pentadienlösung hingegen wurde die Ketonreduktion durch die beiden H-Donatoren vollständig unterbunden (Nr. 3, 4). Eine bimolekulare Singlett-H-Abstraktion ist demnach unter diesen Bedingungen nicht vertreten. Dieser Befund erfuhr eine Bestätigung in den erst kürzlich von WAGNER [10] veröffentlichten Resultaten der Stannan-Reduktion von Aceton, die bei hohen Konzentrationen an 1,3-Pentadien ebenfalls unterbleibt. Das Resultat wurde von WAGNER durch eine bedeutend kleinere Reaktivität gesättigter Ketone im angeregten Singlettzustand als im Triplettzustand erklärt.

Formelschema 1 (Vgl. dazu Tab. 1: Versuche Nr. 1-6)

Das Hydroxyketon **3a** wurde in Benzol und Stannan ca. 3,5mal langsamer photoreduziert (Nr. 6) als das Keton **1a** (Nr. 2), während in Isopropanollösung die Reduktion der beiden Ketone praktisch gleich schnell verlief (Nr. 1, 5) (errechnet unter Berücksichtigung der unterschiedlichen Extinktionskoeffizienten). Zudem erfolgte die Reduktion der 3-Ketogruppe von **1a** weitgehendst stereospezifisch zur 3 α -Hydroxylgruppe (**2**). **3a** hingegen lieferte Gemische der *cis*- und *trans*-3,5-Diole **4a** und **4b**, wobei die relativen Mengenverhältnisse der beiden Isomeren stark mit dem Reaktionssystem variierten. Die Hemmung der Fähigkeit zur H-Abstraktion von **3a** in apolarem Medium ist offensichtlich auf die anguläre Hydroxygruppe zurückzuführen, welche im elektronischen Grundzustand aus sterischen Gründen keine intramolekulare H-Brücke an die Ketogruppe ausbildet [IR.: 3615 cm⁻¹ (in CCl₄)]. Dieser *bemerkenswerte, noch näher zu untersuchende Photostabilisierungseffekt* wird durch Isopropanol kompensiert.

2. Epoxyketone 5, 7, 8 und 13 (Tab. 1: Versuche Nr. 7-17; Formelschema 2)

Für die α, β -Epoxyketon-Umlagerung ist die Oxidspaltung $\mathbf{a} \rightarrow \mathbf{b}$ (generelles Schema 2) als photochemischer Primärschritt postuliert worden [11]. Die Reaktion $\mathbf{a} \rightarrow \mathbf{c}$ wurde von uns u.a. am Beispiel der Steroidverbindungen $\mathbf{5} \rightarrow \mathbf{6}$ [12] [13] näher untersucht. Die Beeinflussung der thermisch kontrollierten Sekundärreaktionen des hypothetischen Photoprimärproduktes \mathbf{b} (Recyclisation zu \mathbf{a} oder Umlagerung zu \mathbf{c}) durch sterische Faktoren konnte in diesem System nachgewiesen werden [12] (vgl. dazu ferner die in [11a] aufgezeigte Photoepimerisierung an C_{α} eines monocyclischen Epoxyketons).

In Anwesenheit eines H-Donators wie Tri-(n-butyl)-stannan war *a priori* die Möglichkeit gegeben, dass anstelle der Sekundärprozesse $\mathbf{a} \rightarrow \mathbf{b} \rightarrow \mathbf{c}$ eine 2H-Addition an **b** und Ausbildung des Hydroxyketons **f** eintrete. Im Erfolgsfall würde damit ein direkter Nachweis des vorgeschlagenen diradikalischen Primärproduktes **b** geliefert⁵). Für einen schlüssigen Nachweis dieser Schrittfolge

⁵) Untersuchungen der Wanderungstendenzen verschiedenartiger Gruppen R in a → c sprechen für eine homolytische Oxidöffnung und gegen die alternative heterolytische Spaltung zu einer Zwischenstufe +O-C=C-C-O⁻ [11] [14].

musste aber nach einer Versuchsanordnung gesucht werden, die eine allfällige H-Abstraktion durch die photolytisch angeregten Epoxyketone $(a \rightarrow d)$ ausschliessen, da die letztere entweder zum Epoxyalkohol **g** oder über $d \rightarrow e$ ebenfalls zum Hydroxyketon **f** führen könnte. Die nachfolgend besprochenen Experimente wurden daher so angelegt, dass gegebenenfalls zwischen einer «Singlett»-Reaktion $a \rightarrow b$ $(\rightarrow f)$ und einer «Triplett»-Reaktion $a \rightarrow d$ $(\rightarrow g$ oder e) differenziert werden könnte.

Die Bestrahlungsversuche Nr. 7–9 mit dem *Epoxyketon* **5** [15] führten ausnahmslos zum β -Diketon **6** [12] [13] als dem einzigen Photoprodukt. Die Tendenz zur photolytischen Oxidspaltung ($\mathbf{a} \rightarrow \mathbf{b}$) dominiert demnach auch in Isopropanollösung gegenüber der bei **1a** und **3a** beobachteten H-Abstraktion durch das Triplettcarbonyl

(Nr. 1, 5). Erst mit Stannan liess sich die Umlagerung $5 \rightarrow 6$ vollständig unterbinden (Nr. 10). Stattdessen entstand wesentlich rascher ein Gemisch, das vorwiegend die an C-5 stereoisomeren Hydroxyketone **3a** und **3b** [16] im ungefähren Mengenverhältnis 6:1 (NMR.-spektroskopische Bestimmung) enthielt. Das restliche Material wurde hauptsächlich als die ebenfalls an C-5 stereoisomeren Ketone 1a (Hauptprodukt) und 1b [17] (Differenzierung mittels NMR.) identifiziert. Dieses Resultat kann nach beiden Reaktionsmodi, $\mathbf{a} \rightleftharpoons \mathbf{b} \rightarrow \mathbf{f}$ und $\mathbf{a} \rightarrow \mathbf{d} \rightarrow \mathbf{e} \rightarrow \mathbf{f}$ interpretiert werden, wenn für die Ausbildung der Produkte 1a, b und 3b, welche im generellen Schema (2) nicht vorgesehen war, z.B. die im Formelschema 3 aufgeführten zusätzlichen Zwischenprodukte **h-k** vorausgesetzt werden. Als Vorläufer der gesättigten Ketone 1a und 1b könnte das konjugierte Keton 16 auftreten, welches seinerseits u.a. auf eine wenigstens teilweise Dehydratisierung eines Zwischenproduktes **h** der Übergänge $\mathbf{b} \rightarrow \mathbf{f}$ bzw. $\mathbf{e} \rightarrow \mathbf{f}$ zurückführbar wäre⁶). Bei der photolytischen Reduktion von 16 in Äthanollösung war von uns schon früher 1b isoliert worden [19]⁷). Die Ausbildung der Hydroxyketone unter partieller Epimerisierung an C-5 (\rightarrow 3a, b) weist schliesslich auf das Auftreten einer Spezies mit 5 β -Oxyradikal-Gruppierung hin, die sich unter intermediärer Fragmentierung reversibel zum 5α -Isomeren umlagern kann (vgl. $\mathbf{i} \rightleftharpoons \mathbf{j} \rightleftharpoons \mathbf{k}^{8})^{9}$).

Die Beobachtung, dass die Epoxyketonumlagerung auch in 1,3-Pentadienlösung abläuft (Nr. 8)¹⁰), schien auf Grund der Resultate mit dem nicht substituierten Keton 1a (Nr. 2, 4) eine experimentelle Möglichkeit zu eröffnen, die allfällige Photoreduktion von 5 mit Stannan durch Triplettlöschung zu unterbinden und damit eine Interaktion zwischen dem Primärprodukt der «Singlett»-Reaktion ($\mathbf{a} \rightarrow \mathbf{b}$) und Stannan direkt

- 7) Das Auftreten von 16 in kleinster Menge war im Versuch Nr. 10 nachweisbar. Die Notwendigkeit des Einsatzes chromatographischer Methoden vor der Analyse schliesst aber eine nachträgliche Wasserabspaltung aus 3a, b bei der Aufarbeitung nicht aus.
- 8) Für ähnliche Epimerisierungen von s- und t-Alkoxyradikalen vgl. [20].
- ⁹) Die Wahl der Ketonform der Zwischenprodukte **i-k** im Formelschema 3 erfolgte willkürlich. Sie soll keine Bevorzugung gegenüber den entsprechenden tautomeren Δ^3 -Enolformen präjudizieren. Das Monoradikal i kann sowohl der tautomeren Partialformel **e** im generellen Schema (2) als auch einer äquivalenten Zwischenstufe entsprechen, die sich zwischen die schrittweise 2H-Addition an **b** einschiebt. – Epimerisierungen an C-5 auf der Stufe **b** bei der Epoxyketon-Umlagerung zu **c** (in Abwesenheit von Stannan) scheinen im allgemeinen nicht einzutreten, was aus dem stereospezifischen Umlagerungsverlauf von 3-Oxo-4 α , 5 α -oxido- und 3-Oxo-4 β , 5 β -oxido-4-methyl-Steroiden [21] ersichtlich ist. Diese Beobachtung hatte uns veranlasst, der 10 (5 \rightarrow 4)-Alkylverschiebung vom Typus **b** \rightarrow **c** in diesen Systemen ein hohes Mass an synchronem Charakter zuzuschreiben [12] [21], für den die Diradikal-Struktur von **b** Vorbedingung sein dürfte.
- ¹⁰) Während der Abfassung dieses Manuskriptes kam uns eine Arbeit von REUSCH [14] zur Kenntnis, in welcher die Umlagerung von Isophoronoxid nach dem Schema a → c weder durch 1, 3-Pentadien unterbunden noch durch Triplett-Sensibilisatoren ausgelöst werden konnte. Daraus wird in [14] gefolgert, dass der Triplettzustand dieses Epoxyketons lediglich durch physikalische Prozesse desaktiviert wird und die Photoumlagerung präferentiell aus dem angeregten Singlett erfolgt. Wir danken Herrn Prof. W. REUSCH, Michigan State University, bestens für die Bekanntgabe dieser Resultate vor ihrer Veröffentlichung.

⁶) Anstelle von **h** kann möglicherweise auch ein resonanzstabilisiertes Radikal vom Typus

[•] O-C=C-C-OH (aus $\mathbf{b} + \mathbf{R}H$) treten. Diese Spezies war bereits im Zusammenhang mit der

Photolyse von 3-Oxo-4-sulfonyloxy-5-hydroxy-Steroiden als primäres Photoprodukt und Vorstufe von 16 zur Diskussion gestellt worden [18].

erkennen zu können. Überraschenderweise blieb aber das Epoxyketon **5** bei der Bestrahlung in 1,3-Pentadien und Tri-(n-butyl)-stannan unverändert (Nr. 11). Die Gründe für dieses Verhalten, das im Gegensatz zum entsprechenden Versuch ohne Stannanzusatz (Nr. 8) steht, sind noch nicht abgeklärt.

Nachdem die obigen Versuche zu keiner Differenzierung zwischen einer 2H-Addition an das postulierte Photoprodukt **b** und einer Photoreduktion $(\mathbf{a} \rightarrow \mathbf{d})$ geführt hatten, wurden die *Epoxyketone* **7** und **8** [12] analogen Bestrahlungsbedingungen unterworfen (Nr. 12–15). Die beiden Verbindungen sind strukturell bis auf die Substitution von C-7 gleich. Dennoch unterscheiden sich die Umsatzgeschwindigkeiten zu den betreffenden β -Diketonen 9 bzw. **10** [12] (Nr. 12, 14). Diese Differenz war einer erhöhten sterischen Begünstigung der Recyclisation zum Epoxyketon unmittelbar nach der photolytischen Oxidspaltung in **8** zugeschrieben worden [12]. Im Fall einer Photoreduktion nach dem Schema $\mathbf{a} \rightarrow \mathbf{d}$ hätte erwartet werden können, dass in Gegenwart von Stannan dieselben sterischen Faktoren bei **8** die Entstehung eines Epoxyalkohols (vgl. **g**) gegenüber $\mathbf{8} \rightarrow \mathbf{12}$ begünstigen. Der Nachweis eines solchen Epoxyalkohols gelang aber nicht. Nach der Bestrahlung von 7 und **8** im Benzol-Stannan-System (Nr. 13, 15) konnte jeweils nur das entsprechende Hydroxyketon (**11** bzw. **12**) identifiziert werden.

Schliesslich wurde auch das *Epoxyketon* 13 [22] in die Untersuchung einbezogen, das sich bekanntlich [12] bei der direkten Lichtabsorption unter einer 1,2-H-Verschiebung zum Diketon 14 [23] isomerisiert (Nr. 16). Der Zusatz von Stannan führte wiederum zur Ausbildung des entsprechenden Hydroxyketons 15 [24]. Die parallel ablaufende Umlagerung zu 14 wurde hier aber nur zum Teil unterbunden (Nr. 17)¹¹).

¹¹) Eine Beurteilung der Faktoren, welche im Vergleich zu den erstbesprochenen Beispielen (Nr. 10 usw.) beim Epoxyketon 13 die Umlagerung zu 14 gegenüber dem Umsatz mit Metallhydrid relativ begünstigen, setzt natürlich die Kenntnis des Mechanismus des letzteren voraus. Im Fall einer Dunkelreaktion vom Typus b → f müsste nebst der spezifischen Wanderungstendenz von H (vgl. dazu [14]) auch der Umstand berücksichtigt werden, dass im Primärprodukt aus 13 im Gegensatz zu denjenigen aus 5, 7 und 8 eine syn-ständige C CO. Diradikalgruppierung vorliegt, die möglicherweise gegenüber H-Donatoren weniger reaktiv ist.

3. 3-Oxo-4 β , 5 β -oxido-17 β -acetoxy- Δ^1 -androsten (17) [12] (Formelschema 4).

Die Anregung in der kürzerwelligen UV.-Absorptionsbande dieses Epoxyketons in Dioxanlösung führt bekanntlich zur Umlagerung in das β -Diketon **18** [12]. Die Anregung des $n \rightarrow \pi^*$ -Übergangs löst hingegen keine irreversible Photoreaktion aus. Für die Umlagerung **17** \rightarrow **18** ist daher eine Spezies notwendig, die entweder mit dem zweiten Singlett-Anregungszustand von **17** identisch ist, oder die bei der Anregung der energetisch tiefer liegenden n, π^* -Konfiguration nicht hinreichend ausgebildet wird. Daraus folgt auch, dass die Reaktion den gesamten physikalischen Energieabbau des reaktiven «höheren» Anregungszustandes erfolgreich konkurrenziert.

Die Bestrahlung einer Lösung von 17 (0,06 M) und Tri-(*n*-butyl)-stannan (0,74 M) mit der Wellenlänge 253,7 nm^{12a}) lieferte ein Produktengemisch, aus dem die Produkte 5 (10%), 19 (12%)¹³) und 20 (30%) chromatographisch abgetrennt werden konnten. Ferner liessen sich noch 16% 3a isolieren, das offenbar durch nachträgliche Photoreduktion der Doppelbindung von 20 (vgl. dazu [19]) entstanden sein dürfte. Die alternative Entstehungsweise $17 \rightarrow 5 \rightarrow 3a$ wird deshalb verworfen, weil hier im Gegensatz zum Versuch Nr. 10 ($5 \rightarrow 3a + 3b$) kein 5α -Hydroxyketon 3b nachgewiesen werden konnte. 5, 19 und 20 werden als direkte Photoprodukte von 17 + Stannan betrachtet. Die für ihre Ausbildung verantwortlichen individuellen Photoprozesse können wiederum noch nicht definitiv identifiziert werden. Aus der oben dargelegten Photoreaktivität von 17 müssen aber zwei Möglichkeiten oder deren Kombination erwogen werden:

a) Die mit 253,7-nm-Licht erzeugte reaktive Spezies (vermutlich mit π,π^* -Konfiguration) ist besser zur H-Abstraktion aus Stannan nach dem Schema $\mathbf{a} \rightarrow \mathbf{d}$ als zum

Formelschema 4^{14})

 ¹²) a) Dioxanlösung; Hg-Niederdruckbrenner NK 6/20 (20 W.; rel. Emissionsintensitäten bei 253,7 nm: 100, bei 297-313 nm: 3,8). QUARZLAMPEN GMBH., Hanau. - b) Dioxan- oder Benzol-Lösung; Lichtquelle: Tab. 1, Anm. ^c).

¹³) Die Verbindung 19 ist in den Forschungslaboratorien der CIBA AKTIENGESELLSCHAFT, Basel, auf einem anderen Weg ebenfalls hergestellt worden. Wir danken Herrn Dr. G. ANNER für die Überlassung eines Vergleichspräparates.

¹⁴) Die Geometrie der Doppelbindung von **19** ist noch nicht bekannt.

(reversiblen?) Primärprozess der Umlagerung $17 \rightarrow 18$ geeignet. Alle drei Verbindungen (5, 19, 20) können formell auf diese Weise aus 17 abgeleitet werden. Damit bestünde eine Analogie zur Photoreduktion von Naphtoyl-Verbindungen mit Stannan [4].

b) Der Primärprozess der Umlagerung $17 \rightarrow 18$ tritt noch immer ein, und mindestens eines der Produkte, am ehesten 19 und/oder 20, entsteht durch 2H-Addition an ein Zwischenprodukt dieser Reaktion. Als photochemischer Primärprozess kommen dabei zwei Spaltmodi in Frage: $17 \rightarrow 1$ oder $17 \rightarrow m$ [12]. Die restlichen Produkte resultieren bei der H-Abstraktion durch Molekeln mit tieferer Anregungsenergie, die durch physikalische Desaktivierungsvorgänge aus der primär erzeugten Spezies entstehen.

Interessanterweise entstehen bei Bestrahlungsversuchen von 17 +Stannan mit Wellenlängen $> 310 \text{ nm}^{12}$ ^b) Gemische qualitativ gleicher Zusammensetzung wie mit kürzerwelligem Licht. Es erscheint offensichtlich, dass in diesen Versuchen ausschliesslich photolytische Reduktionsprozesse wirksam sein dürften.

Identifikation bzw. Strukturzuordnung der Produkte Alle Produkte wurden anhand ihrer analytischen Daten hinreichend charakterisiert (vgl. Tab. 2 für die neuen Verbindungen). – 3a, 4a, 4b: Reduktion des Hydroxyketons 3a mit NaBH₄ lieferte die beiden stereoisomeren Diole 4a und 4b. Diese Verknüpfung beweist zusammen mit den nachfolgenden Umsetzungen die Struktur von 3a, 4a und 4b, namentlich die Haftstellen der Sauerstoffunktionen (C-3 und -5) und die Konfiguration von C-3, -5 und -10; Reduktion von O-Acetyl-testosteron mit NaBH₄ zum 3β -Hydroxy- Δ^4 -Derivat und nachfolgende Oxydation mit p-Nitrobenzopersäure ergab den Epoxyal-kohol 2l, dessen nach [25] zu erwartende $4\beta, 5\beta$ -Konfiguration durch CrO₃-Oxydation zum Epoxy-keton 5 sichergestellt wurde. LiAlH₄-Reduktion von 2l und anschliessende selektive 17-O-Acety-

Verbindung	Bruttoformel	Smp. (unkorr.)	$\begin{bmatrix} \alpha \end{bmatrix}_{\mathbf{D}} \\ (c = 0, 2-0, 5 \text{ in CHCl}_3) \end{bmatrix}$
3-Oxo-5 β -hydroxy-17 β -acetoxy- androstan (3a)	$C_{21}H_{32}O_4{}^a)$	176–178°	+ 27°
3α , 5β -Dihydroxy-17 β -acetoxy- androstan (4a)	$C_{21}H_{34}O_4{}^b)$	200–201°	+ 6°
3β , 5β -Dihydroxy-17 β -acetoxy- androstan (4b)	$C_{21}H_{34}O_4{}^b)$	192–193°	+ 20°
3-Oxo-5 β , 17 β -Dihydroxy-17- methyl-östran (11)	С ₁₉ Н ₃₀ О ₃ ь)	181–183°	+ 7°
3-Oxo-5 β , 17 β -dihydroxy-7 α , 17- dimethyl-östran (12)	$C_{20}H_{32}O_3{}^b)$	206–208°	- 11°
3, 5-Dioxo-17 β -acetoxy- $\Delta^{1, 10}$ -5, 10- seco-androsten (19)	$C_{21}H_{30}O_4{}^b)$	215–216°	+ 321°
3-Oxo-5 β -hydroxy-17 β -acetoxy- Δ^{1} - androsten (20)	$C_{21}H_{30}O_4{}^b)$	172–173°	+ 86°
3β -Hydroxy- 4β , 5β -oxido- 17β -acetoxy- androstan (21)	$C_{21}H_{32}O_4^{\ a})$	128–130° und 144°	– 22°
3α - und 3β , 5β , 17β -Trihydroxy- 17-methyl-östran (22 a , b)	$C_{19}H_{32}O_3^{\ a}) = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	223–224° 225°	$+ 8^{\circ} + 1.5^{\circ}$
3α - und 3β , 5β , 17β -Trihydroxy- 7α , 17- dimethyl-östran (23a , b)	$C_{20}H_{34}O_3^{a}$	216° 140°	- 20° - 28°

Tabelle 2. Die neuen Verbindungen

a) Bruttoformel mittels [C, H]-Elementaranalyse überprüft

^b) Bruttoformel mittels Massenspektrum überprüft

lierung in Acetanhydrid-Pyridin führte zur Verbindung 4b. – 11, 12: Haftstellen der Sauerstofffunktionen und Konfiguration von C-3, -5 und -10 von 11 und 12 wurden dadurch bewiesen, dass sowohl diese beiden Hydroxyketone (mit NaBH₄) als auch die entsprechenden Epoxyketon-Vorläufer 7 und 8 (mit LiAlH₄) je zu denselben binären Gemischen stereoisomerer 3, 5 β , 17 β -Triole (7, 11 \rightarrow 22 a + 22 b bzw. 8, 12 \rightarrow 23 a + 23 b) reduziert wurden. – 19: Die Konstitutionsermittlung beruht auf den folgenden UV.-, IR.- und NMR.-Daten: $\lambda_{max} = 290$ nm, $\varepsilon = 2300$ (in C₂H₅OH); $\lambda_{max} = 301$ nm, $\varepsilon = 20250$ (in 0,01 N KOH/C₂H₅OH). $v_{max} = 1254$, 1705 (Schulter), 1720 cm⁻¹ (in CHCl₃). $\delta =$ u.a. 1,83/d/J_{1,19} \sim 0,5 Hz, CH₃-19; 2,61/q/J_{1,2} = 6 Hz, J_{2,2} = 15 Hz, CH_a-2; 2,86/d/J_{4,4} = 16 Hz, CH_a-4; 3,46/q/J_{2,2} = 15 Hz, CH_b-2; 4,22/d/J_{4,4} = 16 Hz, CH_b-4; 5,22/m/u.a. J_{1,2}&_{1,19}, CH-1. Die hier erwähnten Spinkopplungen wurden durch Entkopplungsexperimente [Einstrahlungen bei 3,46 (2-H_b), 4,22 (4-H_b) und 5,22 δ (1-H)] belegt. – 20: Die katalytische Hydrierung von 20 lieferte 3a.

Für die Ausführung dieser Arbeit standen uns Mittel des Schweiz. NATIONALFONDS ZUR FÖR-DERUNG DER WISSENSCHAFTLICHEN FORSCHUNG (Projekt Nr. 3816) und der CIBA AKTIENGESELL-SCHAFT, Basel, zur Verfügung. P. K. dankt der GIVAUDAN SA, Genf, für ein Stipendium.

SUMMARY

The photoreduction of the cyclic steroidal ketone 1a is entirely quenched in 1,3pentadiene solution even in the presence of a large excess of the highly efficient hydrogen donor tri-(*n*-butyl)-stannane. This result conforms with the recent conclusion [5] that the reactivity of excited n, π^* singlet ketones with regard to hydrogen abstraction is appreciably lower than that of triplet n, π^* ketones. In isopropanol solution the photochemical hydrogen abstraction capacity of the hydroxyketone 3a is comparable to that of ketone 1a. In benzene solutions containing stannane, however, the photoreduction of 3a is markedly less efficient. Apparently the angular hydroxyl group in 3a provides a pathway to reduce the reactivity of the excited carbonyl group with regard to bimolecular hydrogen abstraction.

The rearrangement of the saturated epoxyketone **5** to the β -diketone **6** is observed as the exclusive phototransformation in, *e.g.*, benzene, isopropanol or 1, 3-pentadiene solutions. This indicates that the proposed primary photochemical process, *i.e.* reversible homolytic fission of the C_{α} -O oxide bond, occurs preferentially from the excited singlet state and that bimolecular hydrogen abstraction from isopropanol is not an efficient competing process. In benzene solution containing tri-(*n*-butyl)-stannane, however, **5** is converted to the stereoisomeric hydroxyketones **3a** and **3b**, and the ketones **1a** and **1b**, to the exclusion of the rearrangement **5** \rightarrow **6**. Attempts to determine the exact stage at which stannane hydrogen intervenes in the phototransformation of the epoxyketone (hydrogen abstraction by the excited carbonyl group *vs*. hydrogen addition to the hypothetical primary diradical photoproduct in the epoxyketone rearrangement) have failed so far. In particular, *irradiation of a 1,3-pentadiene solution containing epoxyketone* **5** and stannane produced no observable chemical change of **5**.

The conjugated unsaturated epoxyketone 17 remains unchanged on irradiation in the $n \rightarrow \pi^*$ band (dioxane or benzene solutions), but rearranges to the β -diketone 18 when excited in the second absorption band (in dioxane solution) [12]. Hydrogen incorporation is effected, instead, by the addition of tri-(*n*-butyl)-stannane, and qualitatively similar product mixtures are formed on irradiation in the two wavelength regions.

Organisch-chemisches Laboratorium der Eidg. Technischen Hochschule, Zürich

LITERATURVERZEICHNIS

- [1] 40. Mitt.: J. PFISTER, H. WEHRLI & K. SCHAFFNER, Helv. 50, 166 (1967).
- [2] K. SCHAFFNER, Pure appl. Chemistry, im Druck (1968).
- [3] C. WEIZMANN, E. BERGMANN & Y. HIRSHBERG, J. Amer. chem. Soc. 60, 1530 (1938); P. DE MAYO, J. B. STOTHERS & W. TEMPLETON, Canad. J. Chemistry 39, 488 (1961); G. QUINKERT, B. WEGEMUND, F. HOMBURG & G. CIMBOLLEK, Chem. Ber. 97, 958 (1964). Anmerkung bei der Korrektur: vgl. auch J. C. W. CHIEN, J. Amer. chem. Soc. 89, 1275 (1967); R. SIMONAITIS, G. W. COWELL & J. N. PITTS, JR., Tetrahedron Letters 1967, 3751.
- [4] G. S. HAMMOND & P. A. LEERMAKERS, J. Amer. chem. Soc. 84, 207 (1962).
- [5] P. J. WAGNER, J. Amer. chem. Soc. 88, 5672 (1966).
- [6] G. PORTER & F. WILKINSON, Trans. Faraday Soc. 57, 1686 (1961); W.M.MOORE, G. S. HAM-MOND & R. P. Foss, J. Amer. chem. Soc. 83, 2789 (1961); W.M.MOORE & M. KETCHUM, *ibid.* 84, 1368 (1962); J.A. BELL & H. LINSCHITZ, *ibid.* 85, 528 (1963).
- [7] a) P. J. WAGNER & G. S. HAMMOND, J. Amer. chem. Soc. 87, 4009 (1965); b) idem, ibid. 88, 1245 (1966); c) T. J. DOUGHERTY, ibid. 87, 4011 (1965).
- [8] A. BUTENANDT, K. TSCHERNING & H. DANNENBERG, Z. physiol. Chem. 248, 205 (1937).
- [9] E.ELISBERG, H. VANDERHAEGHE & T.F. GALLAGHER, J. Amer. chem. Soc. 74, 2814 (1952).
- [10] P. J. WAGNER, J. Amer. chem. Soc. 89, 2503 (1967).
- [11] a) C. K. JOHNSON, B. DOMINY & W. REUSCH, J. Amer. chem. Soc. 85, 3894 (1963). b) H. E. ZIMMERMAN, B. R. COWLEY, C.-Y. TSENG & J. W. WILSON, *ibid.* 86, 947 (1964). c) O. JEGER, K. SCHAFFNER & H. WEHRLI, Pure appl. Chemistry 9, 555 (1964).
- [12] H. WEHRLI, C. LEHMANN, P. KELLER, J. J. BONET, K. SCHAFFNER & O. JEGER, Helv. 49, 2218 (1966).
- [13] C. LEHMANN, K. SCHAFFNER & O. JEGER, Helv. 45, 1031 (1962).
- [14] C. S. MARKOS & W. REUSCH, J. Amer. chem. Soc. 89, 3363 (1967).
- [15] B. CAMERINO, B. PATELLI & A. VERCELLONE, J. Amer. chem. Soc. 78, 3540 (1956).
- [16] S.A. JULIA, PL. A. PLATTNER & H. HEUSSER, Helv. 35, 665 (1952).
- [17] A.BUTENANDT, K.TSCHERNING & G.HANISCH, Ber. deutsch. chem. Ges. 68, 2097 (1935).
- [18] G.HÜPPI, G.EGGART, S.IWASAKI, H. WEHRLI, K. SCHAFFNER & O. JEGER, Helv. 49, 1986 (1966).
- [19] B.NANN, D.GRAVEL, R. SCHORTA, H. WEHRLI, K. SCHAFFNER & O. JEGER, Helv. 46, 2473 (1963).
- [20] A. NICKON, J. R. MAHAJAN & F. J. MCGUIRE, J. org. Chemistry 26, 3617 (1961); K. HEUSLER & J. KALVODA, Helv. 46, 2732 (1963), und weitere Literaturstellen daselbst.
- [21] H. WEHRLI, C. LEHMANN, K. SCHAFFNER & O. JEGER, Helv. 47, 1336 (1964); H. WEHRLI, C. LEHMANN, T. IIZUKA, K. SCHAFFNER & O. JEGER, Helv. 50, 2403 (1967).
- [22] P.L. JULIAN, E.W.MEYER, W. J. KARPEL & I.R. WALLER, J. Amer. chem. Soc. 72, 5145 (1950).
- [23] K. MORITA, S. NOGUCHI, K. HIRAGA, T. KISHI, H. NAWA & T. MIKI, Chem. pharm. Bull (Japan) 11, 144 (1963).
- [24] W.COLE & P.L. JULIAN, J. org. Chemistry 19, 131 (1954); H.HIRSCHMANN, F.B.HIRSCHMANN & J.W.CORCORAN, *ibid.* 20, 572 (1955).
- [25] H.B. HENBEST & R.A.L. WILSON, J. chem. Soc. 1957, 1958.